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ABSTRACT 

An experimental and analytical study of hydrogen liquid and slush 

tank gauging methods is described. 

ventory of hydrogen slush during ground storage. Two approaches were 

taken, the first based on vapor-liquid and liquid- slush interface location, 

the second based on direct  total mass sensing. Three interface location 

methods and three total mass  methods were tried. Carbon film point 

sensors,  previously used for vapor-liquid discrimination, were also 

The objective was continuous in- 

successful for discrimination between triple-point liquid and settled 

slush. Time domaincreflectometry was very successful for liquid level 

location and can probably be developed for settled slush level detection. 

Resonant cavity and capacitance methods were developed and demonstrated 

for accurate determination of total mass  of liquid o r  slush without refer-  

ence to liquid o r  settled slush levels. 

Key Words: Hydrogen Liquid; Hydrogen Slush; Instrumentation; 

Liquid Level Sensing; Mass Gauging; Slush Level 

Sensing ; Storage. 
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INSTRUMENTATION FOR HYDROGEN SLUSH 

STORAGE CONTA.INERS* 

D. H. Weitzel, R. S. Collier, D. A. Ellerbruch 

J. E. Cruz, and L. 'T. Lowe 

1. Introduction 

An investigation of methods and instrumentation for  continuous 

inventory of hydrogen slush during ground storage has been completed. 

This work was performed during 1970 under NASA/SNPO-C sponsorship 

at the Cryogenics Division of theNational Bureau of Standards. 

used for most  of the experimental work was a vacuum-insulated cylin- 

dr ical  steel dewar 76 c m  in diameter by 243 c m  deep. Actual volume 

was 1. 102 m3; maximum working volume was about 0. 75 m3. 

The vessel  

When such a vessel contains slush hydrogen, the solids will 

normally settle to the bottom as soon as the fluid is quiescent. 

prepared slush has a settled solid fraction of 0. 35 to 0. 45. 

fraction in the settled portion increases as the slush ages. 

shows change in solid mass fraction and density for settled slush in a 

Freshly 

The solid 

Figure 1 

vessel  with heat leak on the order  of 6. 7 x lo'* W cmW3. 

low heat influx, resulting in a solids loss of only 0. 3 percent per  day. 

This is a very 

If there  is more  heat flow to the slush, and consequently more  

melting of the solids, the density of the remaining solid fraction increases  

at a faster ra te  than shown in figure 1. 

having approximately 20 t imes as much heat influx as the above example 

reached a solid fraction of 0. 6 in 17 hours, instead of in 50 hours. For  

the 1 m3 vacuum-insulated steel dewar used in most of the present work, 

a settled solid fraction of 0. 6 was reached in aboyt 8 hours 

Thus, the slush in a vessel  

I 

E11 . 

* This work was carr ied out at the National Bureau of Standards under 
NASA (SNPO-C) Contract R-45 and NASA-MSFC Contract H-2159A. 
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The settled solids in a slush storage tank will form an  interface 

which represents a sharp density discontinuity similar to the vapor-liquid 

interface, although of much smaller  magnitude. Effective slush tank gaug- 

ing will result from accurate location of both the vapor-liquid and the 

liquid-slush interfaces , along with knowledge of tank geometry and density 

gradients in both the liquid and the settled slush portions. 

gauging methods which respond to total mass  without reference to density 

may be used. Both approaches were included in the present investigation, 

with the total mass  methods proving more reliable than methods depending 

on interface location. 

Alternately, 

2. Experimental Program 

The various forms of tank gauging instrumentation which were 

The t rans-  studied are schematically represented in figures 2 and 3. 

ducers are shown in their  approximately t rue positions in the hydrogen 

slush storage and upgrading vessel. In figure 2 a r e  shown two capacitors 

of different geometry and a time domain reflectometry transmission line. 

The capacitors a r e  total mass  sensors,  as will be shown, and the TDR 

transmission line is designed to  detect and locate a dielectric discon- 

tinuity such as occurs  at a vapor-liquid o r  liquid-slush interface. 

In figure 3 a r e  shown four more transducer systems, making a 

total of seven for which data were obtained. 

pair of microwave horns with faces 90 c m  apart  which give average density 

of the fluid between them by means of a time-delay-induced frequency dif- 

ference. Another pair  of microwave horns located just below the top plate 

of the dewar a r e  for location of interfaces by means of a microwave reflec- 

tion method. A third microwave system uses  a pair of loop antennae in the 

ullage space near  the top of the dewar 

of a resonant cavity technique. 

shown six carbon film sensors which give temperature (and hence density) 

distribution and also can discriminate between triple-point liquid and 

settled slush. 

Represented at the left a r e  a 

and measures  total mass  by means 

Finally on the right side of the diagram are 

3 
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Each of the seven instrumentation systems will be discussed in 

In a final section some detail, and experimental results will be given. 

we will compare the various methods and evaluate their  potential. 

3. Interface Location Methods 

The methods best suited for vapor-liquid and/or liquid-slush 

interface location a r e  t ime domain reflectometry, microwave frequency 

domain reflectometry, and carbon film sensors. These three will be 

covered in the present section. 

3. 1 Time Domain Reflectometry 

3. 1. 1 Brief History 

Time Domain Reflectometry (TDR) techniques for measuring 

transmission line discontinuities separated by one inch or  l e s s  have been 

developed [2-71 in the last  eight years. The pulse-echo method has been 

used for many years for location of faults in wide band transmission 

systems such as coaxial cables. The pulse-echo reflectometry a s  a 

laboratory tool has had to await the development of fast r i se  t ime pulse 

gene rator s and sampling oscilloscopes. 
\ 

In TDR systems a fast r i se  time (<120 picoseconds) step generator 

launches a voltage step down the transmission line under investigation. 

The incident and reflected waves a t  some particular point oncthe t rans-  

mission line a r e  monitored with a sampling oscilloscope a s  shown in 

figure 4. 
7 

The system immediately displays the characteristic impedance of 

Analysis of the display shows the nature of each dis- the line under test. 

continuity, which can be resistive, capacitive, o r  inductive. 

6 
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If the losses of the transmission line a r e  negligible, the charac- 

ter is t ic  impedance of the line is 

f (cross -sectional dimensions) z = -  1 
6 (3 -1 )  

where 

e = dielectric constant of the medium between the 
conductors. 

Equation (3 -1 )  shows that the characteristic impedance of the 

transmission line will change with either dielectric constant o r  c ross -  

sectional dimension. It is the change in impedance a s  a function of 

dielectric constant that was used in the work to be described below. 

3. 1. 2 TDR Experiments 

Detection of the liquid-vapor interface of cryogenic liquids was 

readily demonstrated. The change in dielectric constant of equation 

( 3 - 1 )  gives a change in characteristic impedance of the transmission 

line such that 

f (cross-sectional dimensions) ( 3 - 2 )  
1 - -  - 

z L  Jc, 

f (c ros s - sectional dimens ions) (3 -3 )  
1 - -  

and 

( 3 - 4 )  

Equation (3 -4 )  i s  defined a s  the voltage standing wave ratio 

(VSWR) of the two characteristic impedances of the liquid and gas a s  a 

function of the dielectric constant. A similar impedance ratio 

8 



.. exists at the liquid-slush interface, 

(H, triple-point liquid) is 1. 252 and c (0. 5 solid fraction If =L S 
slush) is 1. 268, then a numerical calculation of VSWR shows that 

= /E = 1. 006. 
zS 

(3-6)  

This impedance ratio is well within the sensitivity of the TDR 

system and should be readily detectable. 

the VSWR is 

For  the liquid-vapor interface 

zv = /E = 1. 119 .  
zL 

(3  - 7) 

This l a rge r  ratio has been used for  liquid level sensing. 

A rectangular cross-section parallel-plane transmission line, a s  

represented in figure 5, was constructed. The dimension were 

D = 10. 16 c m  

b = 2. 5 4 c m  

w = 2. 5 4 c m  

t = 0. 1 5 2 c m .  

These dimensionsr8 give a characterist ic impedance of approximately 

6 1 ohms with gas dielectric between the transmission line conductors. 

The length of the line was 203 cm. 

vessel  as shown in figure 2. 

This line was installed in  the one-m3 

9 
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Figure 6 shows three readily detectable levels of characteristic 

These levels a r e  calibrated in reflection coefficient units. impedance. 

Zero reflection coefficient i s  the reference level of 52 ohms in the trans- 

mission line. 

Reflection coefficient is related to the characteristic impedance 

by the equation 

1 + rM 
z M  - 1 - rM z R  

- ( 3 - 8 )  

where 

ZM = measured characteristic impedance 

rM = measured reflection coefficient 

= reference impedance of 52 ohms. 
zR 

Using equation ( 3 - 8 ) ,  the impedance level of the vapor dielectric 

), and triple point dielectric N B P  (Zv) ,  normal boiling point dielectric ( Z  

('TP ) were found to be 

(52 
- + r ~ ~ ~  - 1 + 0.022 

'R - 1 - 0.022 'NBP - r~~~ 
- 

61 ohms, 

= 54. 3 ohms, 

- + r T P  - (52) = 53. 7 ohms. 'R - 1 - 0.017 
- 

'TP rTP  

Using the relationship 

'NBP - /?- 
'TP N B P  

11 
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it is found that NBP and 'TP' and substituting the values of 2 

54. 3 
2 

NBP T P  c 

This ratio is correct  for the dielectric constants of normal-boiling- 

(TP)  is 
point and triple-point hydrogen. 

readily discernible f rom LH, 

The experiment shows that LH, 

with the TDR system. 
(NBP) 

Triple-point LH, and 0. 5 solid fraction slush hydrogen have a 

dielectric constant ratio of about 1. 01. 

for possible detection of the liquid- slush hydrogen interface. 

a liquid-slush interface was not readily detected. 

The TDR was consequently t r ied 

However, 

Reasons for not detect- 

ing the liquid-slush interface could be that the slush melted between the 

transmission line conductors, o r  the slush did not readily pack between 

the inner and outer conductors. 

Another transmission line is now being constructed. This line 

will be made of stainless steel  and will have different cross-section con- 

figuration. Another attempt to detect the liquid- slush interface with this 

new TDR line will be  made. 

coaxial stainless steel TDR line to obtain reference flow rates  f rom the 

0 n e - d  test vessel. 

,In the  meantime we a r e  using a perforated 

The standing wave voltage can be displayed a s  the vertical  part  

of an oscilloscope t race,  where the voltage is  proportional to  the charac- 

ter is t ic  impedance defined by equation (3-  1). 

of the oscilloscope t r ace  will be proportional to the signal transmission 

time, which in turn will -9re proportional to the effective length of the 

transmisstion line. 

counter in the period mode. 

The horizontal displacement 

The vertical output can be used to start and stop a 

In particular, the counter can be triggered 

13 



by the vertical voltage step which is reflected from the vapor-liquid 

interface. 

mission through the vapor-filled par t  of the TDR €ine. 

level goes down, this period increases. 

The counter will then measure the period of signal t rans-  

As the liquid 

Figure 7 shows a typical liquid level vs. t ime plot which was 

obtained during outflow from the one-m3 test  vessel. 

generated by computer direct from data recorded on magnetic tape 

during flow tests,  

tool in this work. 

These curves a r e  

The TDR technique i s  proving to be a very useful 

3. 2 Frequency Domain Reflectometry 

A second signal reflection method which can be used for interface 

location is illustrated in figure 8. 

and does not require a transmission line. 

of simpler installation and better sampling of the total dewar contents, 

but the possible disadvantage of spurious reflections o r  distortions from 

surfaces o r  objects inside the dewar. 

This method uses microwave signals 

It therefore has the advantage 

3. 2. 1 Theory of the FDR Method 

With reference to figure 8,  the microwave signal generator is 

swept in frequency over its spectrum. 

a sawtooth o r  ramp waveform so that a linear frequency versus  t ime 

output is produced by the microwave signal generator. 

The sweep generator output has 

The microwave signal travels f rom the generator to the mixer  by 

If the electrical lengths of the two paths were identical, the two paths. 

reference and test signals going into the mixer would arrive at the same 

time, t , ,  and their  instantaneous frequencies would coincide at all  t imes.  

But the test signal will a r r ive  at a la ter  t ime because this signal goes 

into the cryostat and a portion is  reflected from the vapor-liquid interface, 

14 
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while another portion is reflected from the liquid- slush interface. 

the signal reflected from the vapor-liquid interface will a r r ive  at the 

Thus, 

mixer at  time t,. 

will a r r ive  even la ter ,  at  time t,. 

The signal reflected from the liquid-slush interface 

Because all inputs to the mixer a r r ive  at different t imes,  the 

instantaneous frequencies differ, a s  shown by the frequency vs. t ime 

relationship on the figure. The mixer is  essentially a product demodu- 

lator, i. e. , a device having an output signal which is the product of sums 

and differences, but all except the differences (fl - f 2 )  and (fl - f3 )  a r e  

filtered out. 

functions of the distances f rom the plane of the horns to the liquid and 

slush planes. 

These a r e  displayed on a spectrum analyzer and a r e  

The relationship between distances and frequency i s  

A f .  
I Li = c- 6 

where B i s  the average dielectric constant of the medium between the 

horns and the interfaces, hf. is the measured frequency difference, C 

is a constant, and 4,. is the distance from the horns to the ith interface. 
1. 

I 

3. 2. 2 F D R  Experiments 

A pair of microwave horns were located above the liquid near the 

top of the one-m3 test dewar a s  shown in figure 3. 

relation obtained between frequency shift and liquid level for both 

nitrogen and hydrogen. 

is one o r  two cm, which contributes significantly to the scatter of the data. 

Figure 9 shows the 

The uncertainty in visual liquid level (abscissa) 

Slush level data are shown in figures 10 and 1 1 ,  which a r e  oscillo- 

scope pictures of the spectrum analyzer trace.  

actually frequency, but the corresponding fluid depth scale is shown, 

The horizontal scale is 

17 
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with the bottom of the dewar (0 cm)  at the right end of the traces.  

these pictures were taken with 180 c m  of liquid in the dewar; the liquid- 

vapor interface is shown by the large amplitude spike at  the left side of 

the pictures. 

All of 

The top picture of figure 10 was obtained with the cryostat fu l l  of 

Responses f rom the vapor-liquid inter- normal-boiling liquid hydrogen. 

face and from the dewar bottom a r e  clearly shown. 

between these two extremes a r e  probably reflections from bubbles. 

The small spikes 

The bottom picture in figure 10 was obtained with 40 cm of settled 

Three separate density regions can be distinguished. slush in the dewar. 

From zero to 40 c m  the fluid is settled slush. From 40 to 90 c m  we have 

homogeneous triple-point liquid, giving a very low reflected signal. This 

region of uniform density corresponds accurately to the presence of a 

heavy copper shield which contacts the lower 100 cm of the dewar wall. 

Above the 100 c m  level, the liquid is stratified by convection currents. 

These a r e  caused by heat leaks and the warmer normal-boiling liquid at  

the surface. 

present between 90 and 180 cm at the instant the picture was taken. 

Several significant liquid-liquid interfaces apparently were 

Figure 11 shows pictures taken 10 minutes and 25 minutes after the 

lower picture of figure 10. 

tributions a r e  still  changing. The liquid- slush interface is  still  apparent 

at 40 cm,  but below this interface the slush is  more homogeneous (lower 

signal) than before. 

fication, with a well-defined liquid-liquid interface at  120 cm, the liquid- 

slush interface still present, and indication of stratified layers present 

also in the settled slush. 

After 10 minutes (top picture) the density dis- 

The lower picture of figure 11 shows continued strati-  

This method of locating regions of changing density in cryogenic 

fluids appears to have high potential for liquid level indication, and also 

is fairly good for discrimination of a settled slush level. The readout 

21 



instrunentation was not developed beyond the feasibility stage because 

of time and funding limitations. 

3. 3 Carbon Film Sensors 

Sophisticated point sensors  based on change in electrical resis - 
tance have been developed by deposition of thin carbon films on substrates 

of glass o r  sapphire. 

decay transient yields temperature and fluid phase information. 

pal advantages over prior technology of this type a r e  high signal level 

and fast response time. 

A power pulse followed by interrogation of the 

Princi- 

The method has been extensively tested for liquid-vapor interface 

location in hydrogen and nitrogen. 

program have shown that the sensors can also distinguish between triple- 

point liquid and slush for both nitrogen and hydrogen. 

Tests performed under the present 

Two carbon film sensors were tested in the density reference 

system. 

the t r iple  point liquid nitrogen o r  hydrogen and the settled slush, thus 

indicating that these sensors have good potential a s  settled slush level 

indicators. 

sapphire substrates in hydrogen is shown in figure 12. 

sient is similar in both tr iple point liquid and settled slush, indicating 

that there  is a liquid boundary layer  surrounding the sensor in the slush. 

The sensor then attains a higher temperature in the slush, as indicated 

by the lower voltage across  the sensor. 

There was a significant difference in sensor response between 

The response to a constant current pulse for both Pyrex and 

The initial t ran-  

There appears to be an oscillation in the temperature of the sensor. 

This oscillation occurs at about eight cycles per  second, independent of 

the substrate o r  power input between 0. 05 watts and 0. 5 watts, These 

effects in slush were  not completely understood and further tests were 

designed to clarify the heat t ransfer  which occurs between the sensor and 

the slush. 
22 
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Figures 13 and 14 show temperature responses obtained for six 

unmatched carbon film sensors which were located in the one-cubic-meter 

dewar, a s  shown in figure 3. The temperatures were obtained by main- 

taining the liquid hydrogen in equilibrium with its vapor a t  various pres- 

sures. The temperature response curves a r e  useful for-analysis of the 

slush-discriminating transients. 

quick and convenient check of liquid hydrogen temperature, and therefore 

density, in the vicinity ,of each sensor before reaching triple-point. 

After the hydrogen is pumped to triple-point and solids a r e  formed, 

These curves also make possible a 

stratification of temperature and density develops quickly in the liquid 

above the settled slush; the resistance-temperature curves have proven 

useful in following this action. 

The sensors were all able to discriminate between triple-point 

liquid and settled slush by virtue of change in transient characteristics, 

but the regular 8 Hz oscillatory transients previously observed for the 

two sensors tested in the Density Reference System were not reproduced. 

The sensor mounting was changed so that the sensors were at  least three 

inches from any supporting brackets, and the oscillations reappeared 

although they were not a s  pronounced and regular as those observed in 

the density reference system. 

Work on the carbon film sensors and the heat transfer mechanism 

causing the oscillations is being continued under a contract extension. 

4. Total Mass Gauging 

The resonant cavity method is uniquely well-suited for total mass  

gauging in a tank of simple geometry which contains a minimum of inter- 

fering penetrations o r  irregularities. Capacitance probes respond to the 

total mass  of fluid between the electrodes, and hence will give total tank 
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content after multiplication by the proper tank-geometry factor o r  

series of factors. 

constant measure is approximately equivalent to the capacitance methods, 

with the advantage of easier  representative sampling of the tank contents. 

The microwave propagation method of dielectric 

These three methods will be discussed in the present section. 

4. 1 Resonant Cavity Experiments 

Experiments utilizing the resonant cavity method of mass  gauging 

were performed in smaller cylindrical and spherical vessels a s  well as 

in the one-m3 upgrading vessel. 

illustrated in f igu re  15. 

pair of 0. 5-inch rectangular "loop" antennae. 

mater ia l  in the container changes, the resonant frequency of the cavity 

The method of the experiments is 

The TE,, mode was excited and detected by a 

If the quantity of dielectric 

changes. 

the quantity of fluid present. 

The objective is to  measure the resonant frequency to determine 

The resonant frequency was first measured with the container 

empty. The measurement s ta r t s  with the switch in the "test" position. 

The signal frequency was adjusted until maximum amplitude was shown 

on the spectrum analyzer. 

frequency meter  and the frequency read a s  accurately as possible. 

procedure was repeated a s  increments of liquid were added o r  removed 

Then the signal source was switched to  the 

This 

f rom the container, For the smaller containers, the reference mass 

was determined either by placing the vessel  on a platform balance during 

the experiment o r  by making an independent measurement of the liquid 

level. 

Figure 16 shows resu l t s  obtained with liquid nitrogen in a 0. 05 m3 

The periodic nature of cylindrical container having a diameter of 33 cm. 

the response i s  caused by interference with waves reflected from the 
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vapor-liquid interface. 

lated; a number of calculated points a r e  shown on figure 16. 

The effect of the reflected signal can be calcu- 

Sensitivity of the system was limited by the frequency-measuring 

Since ability of the equipment used. 

empty-to-full resulted in a frequency change of about 110 MHz, the 

sensitivity was on the order of 0. 1 percent of the total mass  on the 

steeper portions of the curve 

This was approximately +lo0  kHz. 

and less  on the flat portions. 

Sloshing of the liquid in the partially-filled container had a 

negligible effect on the resonant frequency. 

changed the amplitude of the signal, but large variations in amplitude 

a r e  tolerable in this arrangement because the mass  is measured in t e rms  

of frequency. 

Agitation of the liquid surface 

A second experiment, using a spherical container, is illustrated in 

figure 17. The cavity was a copper sphere having a diameter of 48 cm. 

A single straight wire about 1 c m  long was used a s  an antenna to simul- 

taneously excite the cavity and detect the resonant frequency. 

was insulated with a hollowed-out block of rigid foam, and the "dewari '  

placed on a platform balance to obtain the reference mass. 

The sphere 

Results a r e  shown in figure 18. Sensitivity was similar to that 

obtained with the cylindrical cavity, primarily because the same fre- 

quency meter  was used. 

by inaccuracy of the balance weight setting and by accumulation of 

liquid a i r  in the foam insulation. 

during three empty-to-full runs was 0. 3 percent. 

was about 45 kg (100 lb) of liquid nitrogen. 

Repeatability of the measurement was limited 

The largest spread in frequency data 

The "full" condition 

The third experiment with the resonant cavity method was car r ied  

out in the one-m3 liquid and slush hydrogen upgrading vessel. A pair  of 
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small  loop antennae were located under the top plate of the dewar, as 

shown in figure 3. 

1)  

The experiment was designed to: 

Determine if a large vessel containing various penetrations 

and obstructions can be resonated; 

2) Observe how the resonant cavity technique responds to 

changes in density of the fluid in the vessel. 

Results obtained for  near  normal-boiling and near triple-point 

liquid a r e  shown in figure 19. It is  apparent that resonance was achieved 

in spite of the unfavorable conditions noted above, and a curve similar to 

those previously reported for liquid nitrogen in uncluttered cylindrical 

and spherical containers was obtained. 

as  regular as that shown in f igu re  16 because of the many interfering su r -  

The expected curve would not be 

faces inside the cavity. Marginal resolution of the frequency meter  ac- 

counts for much of the data scatter. . A difference was obtained between 

the two liquid densities, i, e. , lower. resonant frequency for higher density 

at a given liquid level, but scat ter  prevented any more  quantitative evaluation. 

4. 2 Resonant Cavity Analysis 

A considerable amount of mathematical analysis of the resonant 

cavity method of mass  gauging was done during the contract period. 

Many of the mathematical details will be found in Appendix A. 

present section outlines the calculations and discusses the conclusions 

which were reached. 

The 

The following properties have been established: , 

1) In a loss-free 

constant, e, the resonant 

cavity uiiformly filled with a fluid with dielectric 

frequency is given by 

f = U n p  
np a E e  

(4- 1) 
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where a is the radius of the cavity and u 

only on the mode of vibration. If the magnetic permeability, p, is known 

then the frequency of each mode is related to e, and c is related to  the 

density, p, by the Clausius -Mossotti relation, 

are eigenvalues which depend 
nP 

e - 1  
e 3 - 2  
- -  - PP 

4 
3 The volume, V = -na3, is  known; it follows that the resonant frequency 

of each mode determines the total mass  by 

(4-3) 

2) For  the uniform cavity, the field configurations for  each 

mode have been calculated in closed form and the corresponding eigen- 

values u have been tabulated for  ten of the lowest frequency modes. 
nP 

The resulting calculated values for f (for the three lowest TM modes 
nP 

and the lowest TE mode) have been verified experimentally to  within 

one percent, using an air-filled 48 cm diameter copper cavity at room 

temperature. The modes in spherical geometry a r e  highly degenerate, 

resulting in widely spaced fr.equencies among distinctly different lower 

order  modes. This makes it easy to  monitor several  of the lowest order  

modes simultaneously a s  the cavity is  being filled without the bothersome 

effect of "mode crossing' '  which is prevalent in  other geometries. 

3 )  Under normal gravity and two-phase f i l l  conditions, the 

frequency vs. mass for  liquid nitrogen has been obtained on the 48 c m  

diameter spherical dewar (figures 1 7  and 18) for the second lowest 

TM mode. This data has also been obtained by L ~ c k h e e d ' ~ ]  on their  5- 

foot diameter "nearly spherical" dewar for the lowest three TM modes, 
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as shown in figures 4;" of theis repark. 

tively rather well f rom the 48 c m  cavity to the 5-foot cavity. Small 

quantitative differences a r e  probably due to the geometry of the 5-foot 

cavity being a short  cylinder with spherical caps. 

.The data soale qualita- 

4) In order  to  anticipate scaling effects, the Q of the cavity was 

calculated a s  a function of cavity radius in the limit Q >> 1. For  the TM 

modes 

and for the TE modes 

so that Q increases with increasing radius. 

mentally bythe fact that the resonant line widths for the Lockheed 5-foot 

cavity (figure 4-6 of the Lockheed report)  appear at least as narrow a s  the 

line widths for the 48 cm.  cavity. If there  a r e  detrimental scaling effects, 

they m u s t  be found in either the coupling to the cavity o r  the external 

circuitry. 

This is borne out experi- 

5) For  zero gravity (spherical symmetry) and two-phase (vapor- 

liquid) conditions, the frequency vs. mass has been calculated in closed 

form for  constant density in the liquid phase. 

been written which plots the zero-g frequency vs. mass  for  the TM modes. 

It is assumed that liquid will be next to the walls of the sphere, with vapor 

in the center. Plots have been obtained for both liquid nitrogen and liquid 

hydrogen under various densities for the first four TM modes (see figs.  Al 

through A?). 

hydrogen and nitrogen according to equation (4- l ) ,  the normalized curves 

differ very little. 

A computer program has 

Although the "completely ful l"  frequencies differ between 
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Qualitative comparison between these curves and the normal g ex- 

perimental data gives a rough idea of the effect of changing the geometry of 

the liquid (see fig. A5). 

the most mass  values, goes down for the higher .modes. 

,The discrepancy'between these two geometries, f o r  

This is due to the 

tendency of the high field regions in the higher modes to be partitioned 

more uniformly throughout the cavity. However, except for the lowest 

mode, the curves for these two geometries c ross ,  causing the  discrepency 

a t  some particular mass values to be smaller for lower modes than for 

higher modes. These conclusions a r e  in qualitative agreement with the 

zero-g simulations performed by Lockheed for cylindrical cavities. 

6 )  A small  si lver cylindrical cavity was partially filled with 

This resulted in only a small  liquid nitrogen and shaken vigorously. 

jiggle in the resonant frequency. This i s  in qualitative agreement with 

Lockheed's data which show that sloshing gives a relatively small dis- 

crepancy a s  compared to more gross  geometry changes. 

4. 2. 1 Conclusions 

1 )  

is known, then the total mass  can be determined unambiguously from the 

resonant frequency of any mode provided that a proper calibration curve 

is given. 

If the fluid geometry is  known and either the volume o r  density 

2) If the fluid geometry is known and both density and volume 

a r e  unknown, there  is an intrinsic uncertainty in the resonant frequency 

vs. mass relation which is on the order of 20 percent of the uncertainty 

in the density. If more  than one mode is measured simultaneously, it is 

sometimes possible to  completely eliminate this uncertainty (see Appen- 

dix A). 
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3 )  If the geometry is  not known, then for a given frequency in a 

This un- given mode there  is an intrinsic uncertainty in the total mass. 

certainty appears to  be different for  different modes. For each mode, 

there  will be two fluid geometries which will give the upper and lower 

limits of uncertainty. 

certain that they will be hard to simulate in practice, especially for the 

higher modes, and therefore these limiting geometries will be highly 

improbable fluid geometries. Hence, there  will be practical limits to the 

uncertainty in mass which will be obtained by excluding certain highly 

improbable fluid geometries. 

than the theoretical uncertainty. 

_ -  - 

These geometries are not known, but it is  

This practical uncertainty will be smaller 

If the uncertainty is intolerable then some effort must be made to  

determine the geometry, at least  approximately. Three methods have 

been suggested: 

( 1 )  Multiple coupling points, For  example, suppose three coupling 

antennae were located in three orthogonal directions at  the surface of the 

sphere. 

spherical symmetry would be assured. 

induced different frequencies then it seems reasonable that certain 

a s p m e t r i e s  could be deduced which would decrease the uncertainty in 

total mass. 

If a l l  three points induced the same resonant frequency, then 

If the three coupling antennae 

(2) Multiple Modes. Since each mode has a different field 

geometry it seems reasonable that geometry effects can be deduced by 

comparing the resonant frequencies of two o r  more  modes. 

apparent in discriminating between normal-g and zero-g geometries. 

mode degeneracies of spherical geometry make this approach more  

feasible for spherical cavities than for other geometries, 

This is already 

The 

It should be 

emphasized that this procedure is riot the "mode counting" technique used 

by Bendix . [lo1 
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(3)  Point sensors such as carbon film phase discriminators 

could be placed at points in the cavity where the field is expected to be 

significantly higher o r  lower than the average field. These would help 

determine the geometry a s  well as provide a weight function for the 

determination of frequency vs. mass. 

Specific methods for synthesizing two o r  more information inputs, 

a s  required in a l l  of these geometry-determining procedures, have not 

been worked out in detail. 

further work on the resonant-cavity mass-gauging techniques. 

The methods a r e  given as suggestions for 

4. 3 Capacitance Methods 

This section is a study of mass  gauging by capacitance methods. 

The first part  will be theoretical analysis of two simple capacitance 

configurations. 

used and results obtained for mass gauging in the one-m3 test vessel. 

The second part  will be i+ discussion of the capacitors 

4. 3. 1 Mass Gauging by Capacitance Measurement 

Modern capacitance-measuring bridges and development of the 

guarded three-terminal capacitor design have made it possible to mea- 

sure  capacitances with an accuracy of I tO. 01 percent in the presence of 

1000 t imes a s  much lead capacitance. 

to obtain the capacitance between two o r  more widely separated electrodes 

in a storage vessel. The effective dielectric constant obtained by these 

measurements will depend mainly on the total mass  of dielectric within 

the container, but also,  to a l e s se r  degree, on the geometrical config- 

uration of the dielectric with respect to the geometry of the electrodes. 

These advances make it possible 
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4. 3. 1. 1 Dewar Gauging Experiment 

A simple tes t  was conducted to investigate the feasibility of deter- 

mining total storage vessel content by means of capacitor electrodes 

fastened to the inner walls. 

stainless steel dewar was placed on a platform balance. 

and aluminum foil electrodes were taped to the inside. 

was 34. 5 cm wide by 40.6 crn long. 

found to be 1. 219 pf. 

capacitance was 1. 790 pf. 

A 33 c m  diameter by 61 c m  deep cylindrical 

Insulating paper 

Each electrode 

Air capacitance was measured and 

When the vessel  was filled with liquid nitrogen, the 

The liquid level sensitivity was found to be 

0. 012 pf per cm,  and a change of 0. 002 pf could be measured. 

liquid level change of 1.  7 mm could be detected, representing 0. 51 per-  

cent of the volume (and mass )  of the liquid bracketed by the capacitor. 

Thus, a 

A plot of mass vs. capacitance was obtained; this i s  shown in 

figure 20. 

the capacitor, the plot is linear within the accuracy of the experiment, 

Except for a slight fringing effect near the top and bottom of 

One reason for performing the above experiment was to explore 

the effect of the non-uniform electric field by moving a Styrofoam ball 

(simulating a vapor pocket such a s  might form at low gravity) around in 

the liquid between the electrodes. and led us  

to initiate some calculations of various geometrical configurations of 

the dielectric for several geometries of the electrodes. 

lations a r e  given below 

problem of mass gauging by capacitance methods. 

Results were interesting 

These calcu- 

and should lead to a better understanding of the 

4. 3. 1. 2 Geometrical Effects 

As previously stated, the geometrical configuration of the dielec - 
t r i c  with respect to the geometry of the electrodes represents an uncer- 

tainty between the capacitance and the total mass. We will discuss two 
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methods by which this uncertainty can be minimized: 1) by placing the 

electrodes so that the electric field in the absence of this dielectric is 

a s  uniform as possible over the container volume; and 2) by placing point 

phase sensors in the regions of the container where the field i s  signifi- 

cantly higher o r  lower than the average field. 

It is shown in Appendix B that upper and lower bounds on the 

capacitance between two electrodes a r e  given by 

where C is the empty space capacitance, cp i s  the empty space potential, 

V i s  the open space not occupied by the electrodes, S is the surface 

bounded by electrodes, and K is the dielectric constant which may vary 

throughout V; vcp is the empty space electric field. Several qualitative 

conclusions may be obtained from these inequalities: 

0 0 

0 

1) The upper and lower bounds given by (4-6) a r e  the "best 

possible'' when the geometry of the dielectric i s  completely unknown; i. e. , 

there  a r e  electrode geometries such that for any given dielectric volume 

the upper and/or lower bounds may actually be attained depending on the 

geometry of the dielectric. 

2) For a given volume of dielectric the difference between upper 

and lower bounds is minimized when the electric field, ~ c p  

throughout V. 

is uniform 
0, 

3 )  When V is partially filled with dielectric and the field is not 

uniform, both the upper and lower bounds a r e  the highest when the dielec- 

t r ic  i s  in the low field region. This conclusion makes it possible to 
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decrease the uncertainty in capacitance vs. m a s s  when any information 

at al l  i s  given concerning the dielectric geometry. 

4) For  a given geometry, the difference between upper and 

lower hounds decreases and approaches zero as the dielectric suscepti- 

bility, x, gets small (K E 1 + x). This minimizes the uncertainty for 

dielectrics such as liquid hydrogen where x M 0. 23. 

These conclusions will be demonstrated for two simple geometries, 

the parallel plate capacitor and the concentric sphere capacitor, and a r e  

expected to  hold for  more complicated electrode geometries. 

Paral le l  Plate Capacitor 

Suppose the surface area of each plate is A and the distance be- 

tween plates is d, where d is small enough that edge effects may be 

neglected. The volume V i s  equal to Ad. 

dielectric constant K f i l l  a volume V '. Let f be the fraction of the total 

space occupied by the dielectric (f = V '/V). vcp is calculated by let- 

ting cpo = 0 on one plate and cp 

Let a dielectric with uniform 

0 

= Jr on the other plate. It follows that 

= $/d uniformly throughout V. (Here, because edge effects are 
0 

90 
neglected, it i s  assumed that vcp = 0 outside of V. ) The integrals in 

(4-6) a r e  easily evaluated: 
0 

KI Vcpo I adV = ($/d)'[KV ' + (V - V I ) ]  s, 

(4- 7) 
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The inequality (4-6) becomes 

5 -  5 Kf + (1 - f ) .  K 
0 

f + (1 - f ) K  C 

1 + y  5 -  C s fX. 
0 

C 1 + (1 - f )X  

(4-8) 

(4- 9 1 

These bounds a r e  plotted in figure 21 for values of x corresponding to  

LH, and LN, showing that the uncertainty in C is small  if x is small. 

The upper and lower bounds a r e  assumed when the geometry of the 

dielectric is a s  in figure 2 1 (a) and 2 1 (b), respectively. 

figure 21(b), since Jr = vcpdx and Kvcp is  continuous at  the dielectric 

interface, it follows that 

. 

For  example, in 
d 
0 

0 r x r f d  
1 

f + (1 - f )K 

K 
f + (1 - f )K f d r x r d  

and 

d 
- - A [ r K d x  4- S f F 2 d x ]  

V [ f + ( 1  - f)K]a 0 

K 
f + (1 - f )K  

- - 
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Similarly, the upper bound is  obtained directly from figure 21 (a) by 

noting that for this case,  vcp = vcp = $/d uniformly throughout V. 
0 

C onc ent ric Sphere Capacitor 

Suppose the center ball has radius a and the outer shell has radius 

The total volume inside is V = 4 / 3  TT (b3 - a3). b. Let r be the radial 

distance from the center and cp = $ at r = a and cp = 0 at r = b ,  then 

vcp0 = k / r 2  where k = $ab/(b-a). Suppose the capacitor is  partially filled 

with dielectric of volume V ' and dielectric constant K. When the dielec- 

t r i c  is in the high field region, near the center ball, the dielectric forms 

0 0 

a hollow sphere of inside radius, a,  and outside radius r = [(b3 - a3)f 
0 

-& a3]i, where f = V '/V. The integrals in (4-6) become 

r 
k" k2 0 \ Klvcpo12dV = 4rr\ K--pdr+4nC -+dr 

'V La r 
0 

= 4nk2[K( - +) + (- 1 l \ l  
r -GJJ 

0 0 

cpovcpo-dS = $--.4rraa k = 4 n k 2  (b - - a )  
a2 ab ' 

and the bounds for C become 

K- b - a  K(i-F)+(q 1 1 -L) b /  

b - a  
5 -  c <  ab 

C J 

(:-+)+K('-$) 0 r 0 o ab 

or  in te rms  of the susceptibility, x ,  

r - a  
C b 

I:--- 5 1 + xr ( - a )  * 
0 0 

C 
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Similarly, when the dielectric is  in the low field region near the 

outer shell, the dielectric forms a hollow sphere of outside radius b 
1 

and inside radius r. = [ b a  - f(b3- a 3 ) y .  The bounds for C become 
1 

o r  in te rms  of x 

C 

0 
C 

f l  ' 1 1 \; - q) + K ( 7  - ;- 
b - a  

ab 

These bounds a r e  plotted in figure 22 for a / b  = 5 

high and low field graphs represent the extremes in capacitance as a 

and x = 0. 23. The 

function of volume fraction f. It turns out that the capacitance can be 

calculated in closed form in both the high and low field cases and that 

in each case the lower bound gives the exact value of the capacitance. 

To illustrate the facility of the inequalities in (4-6)  where it is  

difficult t o  obtain the capacitance explicitly, 

the bounds for the case  where the dielectric fills a spherical chord (seb 

figure 22(b \ .  

it is  interesting to obtain 

This situation applies when the sphere is in a gravitational 

field and is  being filled with a dielectric liquid. 

in (4-6) become 

In this case,  the integrals 
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where 0 '  = cos'l d / r  and p = max {a, d} where d is the distance from 

the center to the chord surface, 

These integrals a r e  easily evaluated and the bounds on C for this case 

a r e  also plotted in figure 22 as  a function of volume fraction of liquid. 

Two Phase Dielectric in a Uniform Field (Total Mass Gauging) 

Suppose a parallel plate capacitor of volume V (neglecting end 

effects) is partially filled with a two phase dielectric with dielectric 

constants K, and K, which are assumed to follow the Clausius-Mossotti 

relation 

K -  1 - -  - kP K + 2  

where p is  the density and k i s  a constant. It follows that 

- 2kp, + 1 4k 
K1 - 1 - 2kpl ' 

2kp2 + 1 4k 
1 - 2kp,' xz = 1 - E p ,  K, = 

(4- 10)  

where pr and p2 a r e  the densities of the two phases. Let VI and V, be 

the volumes of the two phases and suppose fordefiniteness that pl ;r pz; 

let ml and m, be the total mass of each phase. 

The upper and lower bounds for  C become 

C K V  K2Vz + V - (VI + V Z )  
V < - s a + -  1 

v,+K,+ v - (Vl + V2) C V V 
0 

KXV KaV V 
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Since V, = ml/pl it follows that 

1 
5 

C - 
0 

C r; 1 +  x1 m1 

PlV 
+ X2m2 

P2V 

Since p1 2 pz,the following inequalities hold using equation (4-10): 

P 1  P 2  

xz x 
K l P l  K2P2 

So that in te rms  of the total mass M = ml + m2 it follows that 

1 
5 

C - 
0 

C 
r; x1 M 1 +-*- 

P 1  v 

These bounds on C a r e  the same as those plotted in figure 21 where x is 

replaced by x1 and f i s  replaced b y  m / P I V .  

lower bounds can be assumed only if the entire dielectric is  in the high 

density phase. 

In this case the upper and 

4. 3. 2 Capacitors in Cubic Meter Test Dewar 

Capacitors which were installed and tested in the upgrading dewar 

a r e  shown in figure 2. 

to share  one plate with a TDR transmission line. 

almost to the bottom of the dewar and always extended above the liquid 

surface. The "empty- space" capacitance was 193 pf. Spacing between 

the plates was 1. 27 cm; previous experience in the Density Reference 

System has shown that this spacing allows relatively f ree  passage of 

moving solids. 

One was a parallel plate design, which was made 

This capacitor reached 
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A similar spacing was maintained between the electrodes of the 

This unit was designed with one curved and "rod-to-blade" capacitor. 

one round electrode, a s  shown in figure 2. 

to be parallel to the movement of fluid in the vessel  during mixing. 

Both capacitors were positioned 

"Empty space" capacitance of the rod-to-blade was 68. 949 pf. 

Capacitance values for both capacitors a r e  shown in figure 23 

for triple-point and normal-boiling liquid hydrogen, and for 0. 5 solid- 

fraction slush. 

The top of the rod-to-blade was 162 cm above the dewar bottom, 

so the dielectric was all liquid o r  slush at levels higher than this. 

totally submerged in triple-point liquid, the capacitance is 

When 

C = Ae = A (1. 2516). 

The measured value was 86.296 pf, so A = 68. 949 pf. This is the 

"empty spacell capacitance at the triple-point temperature of 13. 8 K, 

and makes possible the calculation of dielectric constant f rom capacitance 

measurement of any unknown slush mixture. 

Conversion from measured capacitance to density i s  by way of the 

Clausius -Mossatti function 

e - 1  
G + l  
- -  - PP, 

which can be written 

The polarizability P increases about 0. 1 percent between triple-point 

liquid hydrogen and 0. 4 solid fraction slush[91, The variation in e is 

given by 
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de = (g)dP+($)dP = 3pdP + 3Pdp 
(1 - w2 

Triple point liquid density is 77. 017 kg/m3; 0. 5 solid fraction slush density 

is 81. 526 kg/m3. 

1. 0056 cm3/g. 

difference between the extremes for d P  and do, we have 

The corresponding polarizability values a r e  1. 0046 and 

Using the average of these values for P and P, and the 

3 x 0. 07927 x 0. 0010 + 3 x 1 .  0051 x 0. 00451 
(1 - 1. 0051 x 0. 07927)2 de = 

= 2. 81 x + 1. 61 x IOe2 .  

This is the change in G which results when hydrogen changes from 

triple-point to 0. 5 solid fraction slush. 

in polarizability; the second t e r m  is  due to the change in density. 

s tar t  from the triple-point liquid value of G = 1. 25158, the polarizability 

t e r m  accounts for a change in E of 0. 02 percent, while the density t e r m  

accounts for a 1. 3 percent change. 

The f i r s t  t e r m  is due to the change 

If we 

The above analysis applies when all of the dielectric between the 

capacitor electrodes is either liquid o r  slush, i. e, when the rod-to-blade 

capacitor is totally submerged, and when the density distribution is  uni- 

form. 

the capacitance depends on volume between the electrodes, i. e. , on liquid 

level, a s  well a s  on 8. In our rod-to-blade capacitor, a change of one cm 

in triple-point liquid level changes the capacitance by 0. 10 pf. The up- 

grader cross  section is  4560 cm2,  so 0. 10 pf represents a triple-point 

As soon a s  the liquid level drops below the top of the capacitor, 

liquid volume outflow of 4560 cm3 o r  351 g. 

read to the nearest 0. 01 pf, which represents a mass  change of 35 g, o r  

about 0. 06 percent of the full 'vessel. 

The capacitance i s  easily 
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Principal uncertainties in the mass  measurement by this method 

result if the density between the capacitor electrodes is  not known exactly. 

We have made an analysis of the uncertainty which results from an unknown 

density distribution; this uncertainty is shown to be small, indicating that 

the capacitor tends to integrate over mass  rather than volume. 

sults a r e  given in Appendix C. 

The re -  

4. 4 Microwave Method for Dielectric Measurement 

The capacitance measurements described above result in mass  

determination because the dielectric constant of the fluid between the 

capacitor electrodes can be derived from the capacitance. The mass  

then follows, with the uncertainties discussed in Appendix C, by use of 

the Clausius -Mossotti relation. 

An alternative method for  measurement of dielectric constant is 

The density based on time delay in propagation of a microwave signal. 

then follows from the C-M relation, and the total mass  of fluid in the 

sample column can be calculated in a manner analogous to that described 

for the capacitance method. 

a re :  

Two advantages of the microwave method 

1)  The sample is  an unrestricted column of fluid between two 

microwave horns which can be spaced any desired distance apart. 

2 )  The output signal is  a frequency, which can be easily t rans-  

mitted to a data center or,  alternately, can be converted to a proportional 

voltage signal. 

4. 4. 1 System Theory 

The method is  illustrated in figure 24. The microwave signal 

generator, shown in figure 24, is swept in frequency over its spectrum. 

The signal travels f rom the generator to the mixer by two paths, the 

reference and the tes t  channels. 

persionless. 

It is assumed that both paths a r e  dis- 
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The instantaneous frequencies of the two signals fed into the 

mixer a r e  designated f and f ' , and both of them vary linearly at  the 

same time rate. But their frequencies differ because the cryogenic 

fluid delays the signal going through it. 

The tes t  signal undergoes a total phase shift given by 

t =  &e = &fi  
dw c 

(4- 11) 

where t is the group delay time, 4 is  the distance between horn faces, 

and c is the f ree  space velocity of propagation. 

A finite change in the dielectric constant of the fluid produces a 

finite change in the group delay time, 

(4- 12) 

The frequency of the signal generator is swept over the bandwidth, 

(f, - f i )  in time t The average rate  of change of frequency is 
S' 

- _  Af - 
A t  t 

(fz - f l )  

S 

(4- 1 3 )  

The difference between the instantaneous reference and tes t  

frequencies is  then 

(f2 - f l ) 4  
2 c t  6 A s  Af = 

S 

from which 

(4- 14) 

(4- 15) 
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The mixer,  then, is essentially a product demodulator. Its 

output spectrum contains f and f ' frequency sums and differences, but 

a l l  except the difference, Af ,  a r e  filtered out. 

An analysis of the variation in equation (4-15) can be made to 

estimate the accuracy with which the change in dielectric constant ( A € )  

can be measured. 

follows : 

Typical values and associated uncertainties a r e  a s  

t = 10'" seconds; dt = +10'5seconds, the sweep period 
S s 

of the signal generator. 

3 x 101'cm/s; dc = +1 c m / s ,  the f ree  space velocity 

of electromagnetic radiation. 

C = 

8 = 1. 25158, J c  = 1. 119; dJe = +loe3, the dielectric 

constant of triple- point liquid hydrogen. 

A f  = 50 hz; d(Af) = +O. 1 hz, a typical frequency shift and 

the uncertainty of the counter used. 

3 x 10' hz; d(f, - f l )  = +lo7 ,  the frequency sweep (fa  - f l )  = 

of the generator. 

4 ' =  90 cm; d4 = rt0. 2 cm, the distance between horn 

faces. 

The root mean square e r r o r  is 
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Most of this e r r o r  in the Ac measurement results from uncertainty in 

the sweep period of the signal generator. Conversion from Ae to Ap, 

i. e. , f rom change in dielectric constant to change in density, is again 

by way of the Clausius-Mossotti function, as explained in section 4. 3. 2 

and Appendix C. 

4. 4. 2 Experimental Results 

Figure 25 shows data obtained in the one-m3 upgrader for various 

levels of settled slush. The microwave horn faces were 90 c m  apart;  

the lower horn face was 20 c m  above the dewar bottom. 

slush depths shown in figure 25  refer to distances above the lower horn 

face. The balance of the sample column, reaching to the upper horn, is  

assumed to be triple-point liquid. The effective dielectric constant thus 

The settled 

becomes a direct function of the settled slush level. 

The system is normalized, i. e. , A f  i s  set  equal to zero,  with 

triple-point liquid between the horns. 

quency shift proportional to the change in effective dielectric constant i s  

observed, a s  shown in figure 25. 

derives from the Clausius -Mossotti function; the deviation from linearity 

of E vs. 

range from triple point liquid to freshly settled slush. 

When slush is introduced, a f re -  

The mean o r  effective density then 

p in the C-M function is  about 0. 8 percent over the density 

An independent estimate of density can be made by assuming a 

density for settled slush based on previous experience. A reasonable 

estimate for f resh settled slush is 81. 1 kg/m3, i. e, , a solid mass  f rac-  

tion of 0. 45. 

averages of the tr iple point liquid and settled slush depths. A density 

scale based on this assumption i s  shown on the right side of figure 25. 

This is simply another way of expressing the settled slush depth, and the 

two vertical scales a r e  proportional to  one another, A tes t  of the method 

The average density of the column then becomes the weighted 
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is to plot the frequency shift against either vertical scale and observe 

the scatter of the data points and the deviation from linearity. 

indicate that the method can be used to locate a settled slush level to 

within about five centimeters if the above assumptions regarding liquid 

and settled slush densities a r e  made. Conversely, i f  an unknown 

density distribution is assumed, the mean density can be determined 

with a sensitivity of a few tenths of a kg/m3. 

that some refinement of readout instrumentation is  all  that would be 

required to make this method a s  simple and reliable a s  the more common 

capacitance mea s u r  ement method. 

The data 

It appears, a t  this point, 

5. Summary 

The contract objectives were: 

1) Explore methods for detection of settled hydrogen slush 

levels, and 

Provide a method o r  methods for continuous inventory of 

hydrogen slush during storage. 

2) 

Several approaches were examined for each obj'ective, and it was 

experimentally verified that both objectives could be accomplished. 

5. 1 Settled Slush Level Detection 

Carbon film sensors and a microwave method known a s  frequency 

domain reflectometry were both able to discriminate between triple- 

point liquid hydrogen and settled slush in a storage vessel. 

the interface location depends strongly on age and quiescence of the slush, 

i. e. , on the sharpness of the density gradient. In well settled slush, 

carbon film sensors can locate the interface to +O. 5 cm o r  less.  

Accuracy of 

We did not go beyond feasibility demonstration for the microwave 

FDR method. 

uncertainty of about +5 cm. 

Oscilloscope patterns indicated a liquid- slush interface 
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The time domain reflectometry method was unsuccessful for slush 

level detection within the contract period. 

however, with lower thermal conductivity materials and a modified coaxial 

design. 

developed. 

This method is being pursued, 

Indications a r e  that a successful instrument of this kind will be 

5. 2 Total Mass Gauging 

The resonant cavity method of total mass sensing has many attrac- 

tive features, particularly for containers with simple interior geometry. 

It was experimentally shown that the contents of a 48 cm diameter spherical 

vessel  could be determined with an uncertainty of less  than 0. 5 percent 

of the fu l l  mass  during several empty-to-full tes ts  with liquid nitrogen. 

Encouraging results were also obtained in two cylindrical vessels,  and 

extensive theoretical analyses were performed. 

Experimental and theoretical studies of total mass  gauging by 

capacitance methods show these to be the simplest and most accurate 

methods which a r e  immediately available. Total mass  of slush o r  liquid 

hydrogen between the capacitor electrodes can be determined with an un- 

certainty of about +O. 3 percent. Total mass  in the storage tank then 

follows with similar accuracy if the sample between the electrodes is 

representative, and if the tank geometry is well defined. A capacitor 

which reaches from top to bottom of the tank i s  suggested, and an elec- 

trode configuration which allows f r ee  passage of the slush is essential. 

Such a capacitor was developed and i s  now in regular use at  NBS. 

5. 3 Technology Transfer 

A specific result of this contract work has been transfer of tech- 

nology from NBS to a large hydrogen slush generation, storage, and flow 

facility which is under construction at  the NASA-George C. Marshall 

Space Flight Center. This facility requires instrumentation for liquid 
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and slush density determination, liquid and settled slush levels, and 

temperature distribution profiles. 

installed in a 11. 4 m3 (3000 gallon) combination weigh tank and generator 

These tank gauging systems will be 

and in a 87 m3 (23, 000 gallon) combination slush storage and upgrading 

vessel. 

The NBS Cryogenics Division will provide design drawings and 

consultation for installation of the rod-to -blade vertical capacitors in 

both vessels, carbon film ladders in both vessels,  and a t ime domain 

reflectometry line in the 87 m3 storage and upgrading vessel. 
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Appendix A. 

Total Mass Gauging in a Spherical Resonant Cavity 

Introduction 

When a closed metal container is excited by  an R F  antenna probe 

inserted through a hole in the container, theoretically there a r e  an infinite 

number of excitation frequencies for which the container is strongly 

coupled to the antenna; 

between the antenna and the container at  these resonant frequencies. 

this means that energy can flow more freely 

The resonant frequencies correspond to standing wave patterns in the 

cavity which a r e  called resonant modes. 

which occurs at  the lowest possible resonant frequency is  called the 

fundamental mode. 

quencies a r e  called lower order  modes. 

The wave pattern of the mode 

This mode and the modes of the next few higher f re -  

When the cavity is uniformly filled with a fluid, the resonant f re-  

quency changes because the velocity of propagation of the resonant 

standing wave, c = 1/=,  depends on the dielectric constant, s, and the 

magnetic permeability, p, of the fluid. For example, in a spherical 

resonant cavity uniformly filled, the resonant frequencies, f a r e  given 
nP’ 

by 
U n 

fnp = znbpJi;-;: (A- 1 )  

where b is  the radius of the sphere, and n apd p a r e  subscripts which label 

the different modes (these will be explained in detail). The u a r e  

eigenvalues of the modes and a r e  obtained in the process of finding solutions 

to Maxwells equations. 

total mass  by using the Clausius-Mossotti relation 

nP 

The resonant frequencies can then be related to 

€ -  1 P p  = - 
s + 2  (A-2) 
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where P is the polarizability of the fluid which i s  a slowly varying func- 

tion of the fluid density, P. 

If the cavity is uniformly filled with a liquid,the eigenvalues, u 

a r e  just numbers independent of the fluid within the cavity and there  is 

therefore a simple relationship between resonant frequency and total mass. 

However, if the container is only partially filled with liquid, the res t  of 

the cavity being a vacuum o r  a gas,  then the values of u will depend on 

v and e of the liquid, the 1.1 and E of the gas, and the geometry which 

the liquid takes within the cavity; the resonant frequency, then, is no 

longer an unambiguous function of mass  but depends on the liquidgeometry 

np' 

nP 

0 0 

as  well. 

of the boundary conditions at  the liquid-gas interface. However, the 

resonant frequency of each partially filled mode does l ie between the com- 

pletely empty and completely full values 

This is  because the standing wave patterns a r e  distorted because 

U U 

(A-3) 

and varies continuously between these values a s  the cavity i s  filled. This 

suggests that the resonant frequency at  least  approximately indicates total 

mass  independent of geometry. 

The purpose of this note i s  to investigate the geometry effects for 

a spherical cavity with spherical symmetry of the liquid gas interface, 

This geometry is similar to a "zero-g" formation with the liquid clinging 

to the walls and a gas bubble in the middle of the cavity. The reason for 

choosing this geometry is that it is one of the few examples of a partially 

filled cavity for which the Maxwell Equations can be solved in closed form. 

Even though this gometry is particularly simple, it does give a reasonable 
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indication of the uncertainty which may be involved when the geometry is 

not known. 

liquid is hydrogen o r  nitrogen. 

Numerical examples a r e  calculated for cases in which the 

From a practical point of view, the spherical cavity i s  an ideal 

container geometry for this method of mass  gauging. 

is that the spherical symmetry of the cavity wall creates a degeneracy 

in the modes. 

which have the same resonant frequency. This results in the fact that 

the distinct resonant frequencies of the lower order modes a r e  widely 

separated and minimizes the effect of mode crossing in a partially filled 

cavity. Mode crossing occurs when, for a particular liquid geometry, 

the resonant frequency of a higher mode falls below that of a lower mode. 

For  example, if the liquid is nitrogen, mode crossing between the first 

two modes is impossible and for the next few higher modes is quite 

unlikely; this is established from the table of eigenvalues, Table 1 on 

page 74, and the inequalities expressed in (A-3). 

The reason for  this 

That i s ,  there  a r e  a number of standing wave patterns 

The relative independence of the lower order modes suggests that 

they can each be monitored independently. 

geometry in the standing wave pattern, it seems reasonable that the 

modes themselves may be used to at least  partially determine the fluid 

geometry. (Mathematically the problem reduces to this: Given some of 

the eigenvalues of a boundary value problem, how closely can the eigen- 

functions be approximated. ) In fact, it will be shown that for the spherical 

symmetry considered in this analysis, that for a liquid of unknown density, 

Since each mode has its own 

both the location of the liquid-gas interface and the density (hence the 

total mass )  can be determined uniquely if and only if five modes a r e  

monitored simultaneously. 

mines exactly one independent relation between the resonant frequency 

The reason for this is that each mode deter- 
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of that mode and the five unknown parameters e, pJ eo, po, and a ,  

where r = a is  the liquid-gas interface. 

ficient to assume that p, pw 1,leaving anly two unknowns, namely 

8 and a. 

For most applications it is suf- 

0 0  

In Chis case,  two modes will uniquely determine the total mass. 

Solutions for Maxwells Equations in Spherical Coordinates 

When the cavity i s  resonating at  an angular frequency, w , the 

time phase of the electromagnetic field i s  the same at  all points within 

the cavity. 

can be written a s  the real  parts of Ee 

E and H a r e  vectors which depend only on the spacial coordinates. 

source free Maxwell Equations can then be written 

Hence, for a loss f r ee  cavity the electric and magnetic fields 
i w t  i wt  and He , respectively, where 

The 

curl  E = - iwpH 

curl  H = iwsE 

div eE = 0 

div pH = 0. (A- 4) 

It should be emphasized at this point that only two assumptions have 

been made, the cavity is  loss f r ee  and it is source free;  in practice 

these a r e  usually very good assumptions for Falculating resonant f re-  

quencies. 

justified more  carefully in any given situation: we assume that there 

a r e  two regions within the cavity, each of which have uniform density. 

The technical advantage of this assumption is that derivatives of p and 

c a r e  not involved; the equation (A-4) can be solved in each region where 

IJ. and e a r e  constant and the boundary conditions a r e  then modified to 

A third assumption which we will now make, may have to be 

include the liquid-gas interface. The boundary conditions can be written 

{cE.n, yH.n, Exn and Hxn continuous at  each boundary point} (A-5) 
I 

where n is the unit normal vector to the surface at  that point. Since 
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div E = 0 and div H = 0,  both E and H can be expressed in t e rms  of 

vector potentials G and F, 

E = curl  F 

H = curl  G 

where the Maxwell Equations impose consistency conditions between 

G and F. Two independent solutions may be obtained by choosing a 

coordinate direction, say G, the unit vector in the radial direction and 

finding fields which a r e  perpendicular to  ?. 

1 we say we have a TE (transverse electric) mode. 

If E is perpendicular to 

This situation may 

be assured if F is chosen to be 

F = f b  (A- 7) 

where f is a scalar function of tho spacial coordinates. 

have from (A-4) and (A-7) 

In this case we 

E = cur l  f9 

cur l  cur l  fi?. 
1 

iu, p 
H =  - -  (A-8) 

If H is perpendicular to r we say we have a TM (transverse magnetic) 

mode. This situation may be assured if G is chosen to be 

G = g f  (A-9) 

where g i s  a scalar function of the spacial coordinates. 

we have from (A-4) and (A-9) 

In this case 

1 
i w c :  E = -  curl  curl  g9 

H = c u r l g F .  (A- 10) 

The general solution for E and H may be obtained by a superposition 

of (A-8)  and (A-10) 
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1 
iw,e E = curl  f f  +- curl  cur l  gF 

cur l  cur l  f f  . 1 H = curl  g? - - 
iw ~1 

(A-11) 

To find equations which f and g satisfy, we consider the T E  and TM modes 

separately. For  the TM mode (A- 10) and (A-4) imply that 

o r  

curl  E = - iwp curl  gf 

cur l  (E + iwpg?) = 0 . (A- 12) 

This last relation is satisfied only if 

E + iwpgi? = grad cp (A- 1 3 )  

for some scalar  function cp. 

tion (A-4) we have 

Substituting (A-13) into the second of equa -  

cur l  cur l  g? = w"ps g? + iwe gradcp. 

Using the vector equation 

and 

(A- 14) 

(A- 1 5 )  

we find that g satisfies the following equations 

( V 2  +k2) gf = 0 

o.gF = - iwscp. (A- 16) 

A similar argument for the T E  mode shows that f satisfies the following 

equation 

(A- 17)  
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Equations (A- 16) and (A- 17) a r e  the scalar  Helmholtz equations for- g 

and f with standard solutions given by 
:g 

m 
where the L 

differ entia1 equation 

(e ,  cp) are spherical harmonics and the B (kr)  satisfy the n n - 

[ $ p + k 2 - n ( n + 1 ) ] B  r 2  n (kr) = 0 .  (A- 1 9 )  

The general solution of equation (A-19) can be given as a linear combin- 

ation of j (kr)  and y (kr) which a r e  the Spherical Bessel Functions of 
n n * :!: . .  

order n of the f i r s t  and second kind respectively. 

Bn(kr) = Cnkrjn(kr) + Dnkry (kr)  (A-20) 
n 

where C and Dn are constants. The general solutions for f and g may 
n 

be written as  an  infinite se r ies  

(A-21) 

C’ and D‘ m a y  be evaluated by substituting nm D nm’ nm’ nm’ The constants C 

(A-21) into (A- 11) and applying the boundary conditions (A-5). Equation 

(A-21) can be viewed as an  infinite superposition of modes. 

p 
See R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw 
Hill (196 1). 

See M. Abrahamowitz andI. A. Staguq, NBS Handbook of Mathematical 
Functions, p. 437. 

::: * 
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TM Modes Under Spherical Symmetry 

The TM modes a r e  obtained by setting f = 0. If the liquid has 

spherical symmetry the boundary conditions may be satisfied by using 

only one value 

for g contains 

eachfor  n and m in  equation (A-21) and thus the ser ies  

a t  most two non4vanishing te rms:  

= (C nm n (A-22) 
m 

krj (kr)  + D nm kryn(kr)) L n (0 ,  cp).  

Using equations (A-11) and (A-16) along with (A-22),the components of 

the electric and magnetic fields may be written as follows: 

+ k2)g = -- n(n+ 1) 
i w c  imsr2 g r 

g 
- 1  a2 E =  

cp iwcr s in0  aracp 

H = O  r 

He - - - 
r s i n 8  acp 

1 H = -  
cp r a 0 '  (A-25) 

The boundary conditions a r e  applied by letting the container walls 

exist at  r = b and the liquid-gas interface at r = a < b (if a = 0 the 

container is full and if a = b the container is empty. ). 

pH-n and Hxn continuous a t  r = a and r = b imply continuity of H 

H and hence that g is  continuous a t  r = a and r = b. This is com- 

patible with the continuity of cE*n. 

that E and E is continuous and hence that - - g is continuous at 

r = a and r = b. In summary the boundary conditions a r e  completely 

specified by 

The conditions 

and 
8 

cp 
The condition Exn continuous implies 

l a  
8 cp G a r  
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g continuous at r = a and r = b (A-26) 

(A-27) -- a g continuous at r = a and r = b. 
G a r  

m 
Since the L (8, cp) a r e  independent both of radial position and fluid prop- n 
erties, the condition (A-26) is equivalent to 

koajn(koa) = C kaj (ka) + D nm’ kayn(ka) (A-28) nm n 

and 

g(b) = C nm kbj n (kb) + D nm kbyn(kb) (A-29) 

where the coefficient of y (k a)  in equation (A-22) is zero because g m u s t  

be finite at r = 0. 
n o  

(Here, k = ~$6 applies to the region in the gas and 
0 0 0  

k = WK~ applies to  the region in the liquid. ) 

is equivalent to  

Likewise condition (A-27) 

(ka) + D kayn(ka)l (A-30) d[k a j  (k a)] = -- i a  
e a a  o n o  nm 
0 

and 
0 = - - [C  l a  kbjn(kb) + D kby (kb)]. 

c a b  nm nm n 

Equations (A-28), (A-30), and (A-31) a r e  three  independent 

(A-31) 

relations in 

a ,  W ,  e ,  p,, eo ,  and p, The inhomo- 
0’ 

the eight variables, C D nm’ nm’ 
geneous equations (A-28) and (A-30) can be solved uniquely for  C 

D 

comes a homogeneous relation in six variables a ,  W ,  e ,  p,, e o ,  and F 

We will denote this relation by 

and 
nm 

and these values a r e  substituted in equation (A-31) which then be- 

0’ 

nm 

o r  sometimes more  simply by F ( w ,  etc. ) = 0. For  a given set  of 

values for  a,  e ,  p,, eo, and ~1 

container), it can be shown that F plotted as a function of w is oscillatory 

n 
(which is determined by conditions in the 

0 

n 
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and hence there  a r e  an infinite number of solutions to equation (A-32). 

The solution for the pth zero of equation (A-32) is  called w and the 

field pattern obtained by substituting w and the values for C and 

D 

"P 

mode where 
nP nm 

into equations (A-22) and (A-25) is called the TM 
nm mnp 

n = l , 2 , 3  , . . . . .  
p = 1 , 2 , 3  ) . . . . .  
m =  0 , + 1 , + 2 , .  . .  . k n .  

(The range on m comes from the properties of the spherical harmonics. ) 

Since w 

corresponding to the same w 

of w For example, the fundamental frequency wI1 corresponds to 

three modes, TM,,,, TM,,,,, and TM,,, and hence has degeneracy 3. 

Sometimes the first subscript i s  dropped and the three modes a r e  collec- 

tively referred to a s  the TM,,mode (which is an abuse of the t e r m  "mode"). 

is independent of m, we see that there  a r e  a number of modes 
nP 

This number is called the degeneracy 
nP' 

nP' 

We now discuss the conditions under which the resonant frequencies 

w can determine the total mass. The total mass  M is  a function of 

three of the above variables, a ,  e , and e. If the resonant frequencies, 

w of the modes a r e  known,then we have the following relations in the 

five variables a ,  e 

nP 

0 

nP' 
e ,  and p, 

0' Poy 

0 = F , ( w l l ,  etc. ) = F l ( w 1 2 ,  etc. ) = . . . . 

= F (xu etc. ) (A-33) n np' 

where each of the F n ( w  

the resonant frequency of a TM 

etc. ) i s  a relation determined by measuring 
nP' 

mode. Since there  a r e  five variables, 
mnP 
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it is clear that at least  five different modes a r e  necessary to completely 

determine the total mass. 

Functions' it can be shown that each of the above relations is also inde- 

pendent; therefore, five modes are also sufficient to determine the total 

From the properties of the Spherical Bessel 

mass. Lf further assumptions a r e  made, fewer modes may be sufficient. 

For  example, for  most liquids p FW p w 1 reduces the number of neces- 
0 

sary modes to 3; if it i s  further assumed that 6 

necessary modes is two; finally if in addition E i s  known, then only one 

resonant frequency is necessary to determine the total mass. 

FJ 1, then the number of 
0 

Alternately, it may be that the interface, r = a ,  is known and E 

M p (hence the density) i s  unknown; if E 

hence the total mass may be determined by a single resonant frequency. 

As a limiting caseofthis  situation, the case a = 0 indicates a completely 

fu l l  cavity and the resonant frequencies a r e  given by 

M p M 1, then the density and 
0 0 

(A- 34) 

where u is the pth zero of equation (A-32) considered a s  a function 

of the quantity kb. (The quantities u a r e  also known a s  eigenvalues 
nP 

nP 
of the TM "mode". ) The measured frequency 

*. The calculated values for u in the case 

nP El) 

2I-T nP 

f i s  given by f = 

a = 0 a r e  listed in Table 

nP nP 

1 in increasing order  for the lowest ten modes. (Table 1 also includes 

results of a similar analysis for the T E  modes. ) The resonant frequencies 

f 

empty container. 

also plotted in Table 1 a r e  for the specific case of a 48-cm diameter 
nP 

We see from Table 1 that the resonant frequencies of the lower 

order modes a r e  widely spaced. This is primarily due to the degeneracy 

and makes it feasible to simultaneously monitor several  of the lower 

order  modes. 
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Table 1. 

Frequency 
(48 cm dia. Sphere) 

Modes Eigenvalue 8 Degeneracy 

TMl 1 

TM2 1 

TE1 1 

TE2 1 

TM12 

TM3 1 

TM41 

TE31 

TM5 1 

TM22 

- 2.744 

- 3.870 
11 - 

21 - 

U 

U 

u'll = 4.493 

- 4. 973 

U' - 5. 763 

U 41 = 6.062 

= 6. 117 

U' - 6. 998 

- 7. 140 

31 - 

21 - 

U 

12 

31 - 

51 - 

U 

U 

= 7.443 22 U 

3 

5 

3 

7 

5 

9 
3 '  

7 

11 

5 

= 0. 543 GHz 

= 0. 766 

f i l  = 0.889 

f l l  

f2 1 

f31 = 0. 984 

f b l  = 1. 140 

f41 = 1.200 

f12 = 1.210 

f i l  = 1.384 

= 1.413 
f5 1 

= 1.472 
f22 

Examples Using Hydrogen and Nitrogen 

Equation (A-32) was solved for the four lowest order  modes using 
* 

the FORTRAN program listed in Table 2. For  given values of a,  E,  p, 

e , and p the program finds the zeros of F n ( w ,  etc.) plotted as a func- 
0 0' 

tion of kb where 

The pth zero is 

The computer plots the quantity cyu vs. is which is essentially resonant 
nP 

frequency, f vs. total mass M. Here,  
nP' 

hk 
Written by A. E. Hiester. 
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Table 2. 
I ?  i s  .I 22 I I  A 7% l b  21 28 19 YI I? 17 $1 14 11 36 I I  UI 39 40 I t  I 1  13 44 I5 4b 4 1  18 4 ,  I U  57 52 Id 5 %  \I 51 $8 SI bo bl  6 l  I I 61 6 5  Ln 6, 68 bP IO I t  T I  71 7 1  

PROGRAM PLOT3 
DIMENSION IFJLM(131 , I T ~ T L E ( 1 3 ) , X ( , l O O ) , Y ( l ~ O ) ~ A L ( 3 ) r R H 0 ( 3 )  
DATA (IFILM=24HART HIESTERt X3474 1 
A(N,U,F ,AL)=(~ . /AL*PJ(N,AL*F*U)"YPP(N,F*U)=AL**Z*PPJ(N,A~*F*U)*YP~ 

lN,F*U))/(PJ(N,F*U)*YPP(~,F*U)-PPJ[N,F*U~*YP(N,F*U)) 

11*F*U) ) / (PJ(N,F*U)*YPP(N,F~U)-PPJ(N,F*U)*YP(N,F*U)~ 
B ( N , U , F , A L ) = ( A L * * 2 * P J ( N , F + U ) * P P J ( ~ , A L ~ ~ * U ) a l * / A L * ~ P J ( ~ , F * U ) * P ~ ( N t A  

FUN(N,U,F,AL)=A(N,U,F,A~~~PJ(N,W)+B(N,U,F,AL)*YP(N~U) 
1 FORMAT(3F10eOI 
2 FORMAT(*U*,12,5H 1 
3 FORMAT( lHl,lOX,ZA8//9X,llHALPHA * UNP,lOX,*RHOBAR*//) 
4 F O R M A T ( ~ X , F ~ * ~ S ~ O X , F ~ O O ~ )  
5 FORMAT(*OU NOT FOUND IN 100 ITERATIONS*//lX,6E22.8) 
6 FORMAT(5H31" U91291H 1 
P=lo 
ITITLE(1)=8H RESONAN 
ITITLE(2)=8HT FREQUE 
ITITLE(31=8HNCY V S  M 
ITITLE(4)=8HASS - H2 
ITITLE(7)=8HRI9HOBAR 
ITITLE(10)=8H $1 
ITITLE(11)=8HA39LPHA 
I T I T L E ~ 5 ) = I T I T L E ~ 6 l = I T I T L E ~ 8 l = I T I T L E ~ 9 ) = I T I T ~ E ~ l 3 ) ~ ~ ~  
READ l,(AL(I),I=1,3t 
READ 19(RHO(1)~1=193) 
CALL GRAPH(1,1,3,IFILM,O,6) 
DO 60 N=1,4 
I D=P 
ID=ID+lO*(N 

, 

ENCODE(8,2,IFILM)ID 
E N C O D E ( 8 , 6 , I T I T L E ( 1 2 ) ) f D  
DO 5 5  1 ~ 1 9 3  
GO TO (7,8,9),1 

GO TO 9 5  

GO TO 9 5  

7 LTYP=8HTP SOLID 

8 LTYP=8HTP LIO 

9 LTYP=8HNBP LIQ 
95 PRINT 3,IFILM(l),LTYP 

LINE=O 
DO 50 J=1,99 
RHOBAR=J 
RHOBAR=RHOBAR/100e*RHOO 
F=(l.-RHOBAR/RHO(I)I**(1~/3*~ 
UB=7o 5 
US=2.5 
FUS=FUN(N,US,FIAL(I)) 
FUB=FUN(N,UB,F,AL(I)I 
I T=O 

IT=IT+l 
10 UM=[UB-US)/Z*+US 

EF(IT.LEelOl-))GO TO 15 
PRINT ~,USSFUS~UM,FUM,UB,FUB 
STOP 

< I * L I ,  * I ,  ,\ " *I8 I ,  I / , i 4 * d  A 1 $ 8  4 I 5 %  4 , I )  I I < ,  I I *  
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Table 2. (Continued) 
, ~ , ~ , y y t,, I I  4. P I  1 4  1 5  3 1  t I Y  3 ,  10 2 1  I t  ,I I a  1'. >I 1 )  IH 29 YI J i  11 11 31 15 $4 1 IB 79 40 4,  4 )  4 1  4, *I l d  1' 4D 43 $0 , I  52 5 ,  ,I 5) Ib 57 Z4 SV 60 61 61 63 04 *? 66 e l  rn L I  10 7 )  71 11 

15 FUM=FUN(NrUMrFrAL( I )  1 
IF(A8S(FUM)~LToe000Ol)GO TO 45 
I F ( ~ ~ ~ ~ G ~ ~ O O O A N D ~ F U S ~ G T ~ O ~ ~ O ~ ~ F U M ~ L T ~ Q ~ ~ ~ N D ~ F U S ~ L T ~ O ~ ~ G ~  TO 20 
UB=UM 
FUBaFUM 
GO T O  10 

FUStFUM 
GO T O  10 

45 X(J)=RHOBAR 
Y ( J  )=AL( I )*UM 
LINE=LINE+l 

LINE=O 

20 US=UM 

IF(LINEoNEo51)GO TO 50  

PRINT 3,IFILMfl),LTYP 
50 PRINT 4,Y(J)*X(J) 

IF(IoNEo1)GO TO 53 
CALL L G R A P h ( X r Y * 9 9 , I T I T L E , I F I L M )  
CALL CPGRAPH(X(99)rY(99)71,,,1+4) 
GO T O  55 

CALL CPGRAPH(X(991rY(99) ,1 , , , I+4)  

IFILM(1)=8H89r SlTP 
IFILM(2)=8H SOLIDI/ 
IFILM(3)=8H$l+ TP L 
IFILM(4)=8HIQUID~/$ 
IFILM(5)=8Hl* NBP L 
IFILM(6)=8HIQUID 
CALL COMGRAPH(r75,o75,6,IFILM) 
CALL SKIPFRM 

STOP 
END 

53 CALL CLGRAPH(XrYs99) 

55 CONTINUE 

60 CONTINUE 

FUNCT I O N  SY ( N  rZ 
Y1(Z)=-COS(Z)/Z 
Y2(Z)=-COS(Z)/Z**2-SIN(Z)/Z 
Y3(z)=(-3./z**3+1e/z~*cos~z~-3o/z**2*sIN~z~ 
GO TO (lOr20,30,40~50)N+l 

RETURN 

RETURN 

RETURN 

RETURN 

RETURN 
END 

10 SY=Yl(Z) 

20 SY=Y2(Z) 

30 SY=Y3(Z) 

40 SY=~O/Z*Y~(Z)-Y~(Z) 

50 sY=7./z*(5./z*Y3(z)-Y2(z~l-Y3(z) 

71 0 5  17 76 



J2(Z)=SIN(Z)/Z9*2=COS(Z)/Z 

GO TO ( 1 0 * 2 0 r 3 0 , 4 0 r 5 0 ) N + l  

RETURN 

RETURN 

RETURN 

RETURN 

RETURN 
END 

J3(2)=(3r/Z**3-1o/Z)*S1~[~)-3r/Zww2”COS(Z) 

10 SJ=Jl(Z) 

20 SJ=J2(Z) 

30 SJ=J3(Z) 

40 SJ=5./Z*J3(Z)-J2(2) 

50 S J = 7 . / Z * ( 5 r / Z ~ J 3 ( Z ) - J Z ( Z ) ) - J 3 ( Z )  

FUNCTION PJ(IVwZj 

PJ=Z*SJ(N-l ,Zj-FN*SJfNtZ) 
RETURN 
END 

FN=N 

FUNCTION YP(N,Z)  
FN=N 
YP=Z*SY(N-l,Z)-FN+SY(N,Z) 
RETURN 
END 

FUNCTION PPJ(N,Z) 
FN=N 
P P J = ~ F N * ( F N + ~ . )  )/z*SJ(N~ZI 
RETURN 
END 

FUNCTION Y P P ( N r 2 )  
FN=N 
Y P P = ( F N * ( F N + l o ) ) / Z * S Y ( N , L )  
RETURN 
END 
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CYU n 
fnp = 2rrb;T 0 0  ' 

and 
M = TjV 

where V is the volume of the tank in cm3. 

applied to spheres of any size and to any dielectric fluid. 

The results may then be 

We have assumed that p, = p = e = 1 and plotted the results 

for three different densities corresponding to solid hydrogen, tr iple 

point liquid, and normal boiling point liquid; this corresponds to about 

22 percent range in density. The results for the first four modes a r e  

shown in figures A l ,  A2, A3, and A4. It i s  seen that the uncertainty in 

total mass  is smaller for higher modes. Qualitatively this i s  because 

the field patterns a r e  spread more  uniformly throughout the cavity for 

the higher modes. For example, the uncertainty in mass  vs. 

i s  l e s s  than 5 percent over most of the range. 

with a density change of 22 percent indicating that the resonant mode has 

a tendency to integrate over the mass of the liquid rather than the volume. 

0 0 

(or f4J 

This is to be compared 

In order to obtain an estimate of the effects of liquid geometry, 

the volume f i l l  curve is plotted in figure A5 for normal boiling point 

nitrogen in "zero gravity" (spherical symmetry). 

data points taken from an experiment* filling a 48 c m  diameter copper 

sphere in I'normal gravity". 

geometry affect the resonant frequency of a single mode and makes it 

c lear  that if the geometry is completely unknown it may be necessary to 

use more  than one mode in order to  obtain the desired accuracy. 

This is compared with 

This shows how much the changes in fluid 

See section 4. 1 of this report. 
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Appendix B. 

Upper and Lower Bounds for Capacitance 

in Terms of the Free Space Field 

It is well known that for a two-electrode system the capacitance 

is given by 

G 
0 c =  

where V is the open space not occupied by the electrodes, G is the 

permittivity of empty space, K is the dielectric constant which may vary 

throughout V, and cp is the electrostatic potential satisfying the equations 

0 

c p =  
92 on s2 

where S, i s  the boundary of V at tke first electrode and S, is the boundary 

of V at the other electrode; vcp is the electric field. 

is a minimum with repsect to certain variations in cp. 

principles will be obtained directly in t e r m s  of the f r ee  space potential, 

Yo? s at , is fy ing 

The integral in (B-1) 

These variational 

cp 

dielectric. The free space capacitance, K = 1, becomes 

depends only on the electrode geometry and not on the geometry of the 
0 
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Using the identity vcp = vcp+ (09 - vcp), the following identity 
0 0 

is useful: 

In the vector identity 

the second t e rm on the right vanishes because of equation (B-2). 

fore, using the divergence theorem (assuming sufficiently regular surfaces) 

There- 

where S 

electrodes and dielectric materials, S ,  and S z  a r e  the electrode surfaces 

and Si, i > 2, a r e  the surfaces which contain the interface regions between 

two different dielectric materials. 

1)  on S 

Kvcp.dS. is continuous for  i > 2 and cancels (cp 

is a large spherical surface of radius R surrounding the 
0 

The sum in (B-7) vanishes because: 

2)  cpo = rp on S, and Sa,  and 3 )  (9, - cp) 1 the integral goes as - 
0 R3 ' 

1 0 J 
- cp)Kvcp.dS. for  some j > 

2 where S. coincides with S .  (dS. and dS. a r e  oppositely directed out- 

ward normal vectors). 
J 1 1 J 

With the vanishing of (B-7), equation (B-5) becomes 

Since each t e r m  in (B-8) is non-negative it follows that 

and the capacitance is maximized combining equations (B- 1) and (B-9). 
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To minimize the capacitance in t e rms  of K and cp , the  Swart2 
0 

inequality is  applied twice in succession: 

The first integral in (B-10) can be simplified using the divergence theorem 

and the identity 

v4 (cpvsoo) = vcp*vcpo + cpvovcp 0' (B- 11) 

where the las t  t e r m  in (B- 11) vanishes in V because of equation (B-5), 

(€3- 12) 

where S. a r e  defined a s  before. When the l imit  is taken in (B-12), the 

only remaining surface integrals a r e  those bounded by the electrodes. 

Letting S denote the surface bounded by the electrodes and noting that 

cp = cp on S equation (A-12) becomes 

1 

0 

Combining (B- 13) and B- 10) it follows that 

(B- 13) 

(B- 14) 

and the capacitance is  minimized by combining (B- 1) and (B- 14). 

t e rms  of the empty space capacitance, C 

can be expressed as 

In 

the upper and lower bounds 
0' 
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5- c s -  
0 

C 

Again using the divergence theorem it follows that 

lVVo I2dV = \ cpovqo*dS 
"S 

Again using the divergence theorem it follows that 

and 

. (B-15) 

(B- 16)  

(B-17) 
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Appendix C. 

Total Mass Gauging in a Cylindrical Tank 

by Capacitance Methods 

If the density distribution of a fluid in a storage tank is unknown, 

there  is an inherent uncertainty in the capacitance vs. total mass relation 

which is due to bothgeometric effects and the nonlinearity of the Clausius- 

Mossotti relation. It is then possible only to  calculate upper and lower 

bounds for capacitance vs. total mass .  However, it will be shown that 

for certain geometries and with knowledge on the limits of the fluid 

density, the difference between the upper and lower bounds can be small. 

It will be assumed that gravity is along the axis of the cylinder 

and that if any density stratification takes place it will be normal to the 

cylinder axis. In this case the total mass ,  M, is given by 

where p(4,) i s  the density a s  a function of distance along the axis, A is 

the cylinder c ros s  section and L is the length of the cylinder. Assume 

also that the capacitor is composed of two electrodes with surfaces that 

a r e  parallel with the cylinder axis, i. e. , any line parallel to  the cylinder 

axis will not intersect the electrode surface at any angle other than zero. 

Because of the assumption on density stratification it follows that the 

capacitance, C, is given by 

where E(&) is  the dielectric constant of the fluid a s  a function of distance 
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along the axis, C 

end effects are neglected so the capacitor length L is assumed to be 

equal to the cylinder length. 

is  the empty space capacitance and, for the moment, 
0 

The Clausius-Mossotti relation is given by 

E.- 1 Pp = - 
e f 2  

where P is  the polarizability which is a slowly varying function of the 

density, p. Solving for G gives 

1 + 2PP 
1 - P p  e =  

and dividing through the first term it follows that 

3PP 
1 - P p '  e = I/+- 

Substituting (C-5) into (C-2) it follows that 

3c L 
0 

SOlPPPP - c = c +- O L  

There remains only to find upper and lower bounds to this integral in 

t e r m s  of the relation (C-1). 

polarizability a r e  known, i. e. , that 

It i s  assumed that the limits of density and 

E S P < $  and 

where the upper and lower bars  refer to the upper and lower limits of 

the quantities. If P p  < 1 then the quantity 

function of P p  and it follows that 

i s  an increasing 1 
- pp 

1 
s - .  

1 
5 

1 
1 - Z Q  1 - P p  1 - P P  

8 9  



It follows, using ( C - 8 )  and (C- l ) ,  that 

and, substituting (C-9) into (C-6), 

After combining the relations in (CdIO), it 

- -and 
AL 

(C- 10) 

follows that 

(C - C0) (1 - 66) (C - C0) (1 - PP) - 5 -  5 (C- 11) 
3 c  P 

0- 
3 c  P AL 

0 

If the difference between the upper and lower bounds i s  small, then the 

total mass  is approximately proportional to C - C 

for this difference, A ,  is 

The expression 
0' 

1 c - c  0 1  
( F - k - F + p ) , o r  - 

0 
3 c  A =  

c - c  
O e- + (5- p). P P  

0 
A =  3 c  

Another way of writing (C-11) is  

PP' 
- -  

- A  
+ 3 c  P 

- 2M 
AL -0 

0- 
3 c  P 

0 

or 

7 A  1 1 -  c - c  
- -  z (P + P)J  Ifr z. M 

0 
AL - 3 c  

(C-12) 

(C- 13) 
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Example - -  A Liquid Hydrogen Tank with Solid Particles, i. e. , Hydrogen 

Slush: 

If gas  and liquid a r e  present, the density in the gas phase is 

negligible so that the integrand in (C-6) is essentially zero over the gas 

range. The upper and lower bounds for P and p can then be restricted 

to the liquid and solid phases. 

point temperature and that the concentration of solid particles is less 

than 50 percent then, and 3 are the corresponding values for 50 per-  

cent solid fraction and ? and p a r e  the values for tr iple point hydrogen. 

Substituting these values gives 

If it is known that the liquid i s  at tr iple 

- 

6 = 0. 081526 gm/cm3 

P, = 0.077017 gm/cma 

= 1.0056 cm3/gm 

2 = 1. 0046 cm3/gm 

1 + ( 3  - p) = 2 (0. 00099 + 0.0045) gm/cm3 

= 0. 0027 gm/cm3. 

The total mass M is then obtained from equation (C-13)  

It is seen that although the uncertainty in density is almost 5 percent, 

the uncertainty in total mass is about 0. 3 percent, showing that the 

capacitor tends to integrate over mass  rather than volume. 
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